👤

Aflati x ∈ [0,2π] pentru care cos 2x + sin²x= 1/2.

Răspuns :

Aplici    formula

cos2x=cos²x-sin²x Ecuatia     devine

cos²x-sin²x+sin²x=1/2

cos²x=1/2

cosx=+/-√1/2=+/-1/√2=+/-√2/2

cosx=+√2/2=>

x1=π/4

x2=2π-π/4=7π/4

cosx=-√2/2

cadranul    2

x3=π/4+π/2=3π/4

cadranul    3

x4=π/4+π=5π/4

cos 2x +sin²x =1/2 <=> cos²x -sin²x +sin²x =1/2 <=> cos²x=1/2 <=>cos x =+-√2 /2 => cos x=√2 /2 <=> x=45 adica x=π/4 sau x=2π -π/4 =7π/4 .

cos x=-√2 /2 <=> x=π/4 +π/2 =3π/4 sau x=π/4 +π=5π/4 .