👤

Se considera nr A= 3 la puterea 1 + 3 la puterea 2 +.....+3 la puterea 2011
a) aratati ca A este nr impar
b) calculati ultima cifra a nr A + 1
c)calculati restul impartirii lui A +1 la 5
rezolvati decat c



Răspuns :

b) calculati ultima cifra a nr A + 1

b) calculați ultima cifră a numărului A + 1


R:


[tex] \it A + 1 = 1 + A =1+3+3^1+3^2+\ ...\ + 3^{2011} = \\ \\ =(1+3+3^2+3^3) +3^4(1+3+3^2+3^3)+\ ...\ +3^{2008}(1+3+3^2+3^3)= \\ \\ = 40+3^4\cdot40+\ ...\ +3^{2008}\cdot40=40\cdot(1+3^4+3^8+\ ...\ +3^{2008}) \Rightarrow \\ \\ \Rightarrow u(A+1) =0 [/tex]