👤

Calculati-mi 4 pe 5rad2 minus 4rad3 plus 38 pe 3rad3 minus 2rad2 minus 20pe 6 rad3 minus 7rad2

Rad=radical


Răspuns :


[tex] \frac{4}{5 \sqrt{2} } - 4 \sqrt{3} + \frac{38}{3 \sqrt{3} } - 2 \sqrt{2} - \frac{20}{6 \sqrt{3} } \\ \\ \frac{4 \sqrt{2} }{5 \times 2} - 4 \sqrt{3} + \frac{38}{3 \sqrt{3} } - 2 \sqrt{2} - \frac{20}{6 \sqrt{3} } - 7 \sqrt{2} \\ \\ \frac{4 \sqrt{2} }{10} - 4 \sqrt{3} + \frac{38}{3 \sqrt{3} } - 2 \sqrt{2} - \frac{20}{6 \sqrt{3} } - 7 \sqrt{2} \\ \\ \frac{2 \sqrt{2} }{5} - 4 \sqrt{3} + \frac{38}{3 \sqrt{3} } - 2 \sqrt{2} - \frac{20}{6 \sqrt{3} } - 7 \sqrt{2} \\ \\ \frac{2 \sqrt{2} }{5} - 4 \sqrt{3} + \frac{38 \sqrt{3} }{3 \times 3} - 2 \sqrt{2} - \frac{20}{6 \sqrt{3} } - 7 \sqrt{2} \\ \\ \frac{2 \sqrt{2} }{5} - 4 \sqrt{3} + \frac{38 \sqrt{3} }{9} - 2 \sqrt{2} - \frac{20}{6 \sqrt{3} } - 7 \sqrt{2} \\ \\ \frac{2 \sqrt{2} }{5} - 4 \sqrt{3} + \frac{38 \sqrt{3} }{9} - 2 \sqrt{2} - \frac{20 \sqrt{3} }{6 \times 3} - 7 \sqrt{2} \\ \\ \frac{2 \sqrt{2} }{5} - 4 \sqrt{3} + \frac{38 \sqrt{3} }{9} - 2 \sqrt{2} - \frac{20 \sqrt{3} }{18} - 7 \sqrt{2} \\ \\ \frac{2 \sqrt{2} }{5} - 4 \sqrt{3} + \frac{38 \sqrt{3} }{9} - 2 \sqrt{2} - \frac{10 \sqrt{3} }{9} - 7 \sqrt{2} \\ \\ ( \frac{2 \sqrt{2} }{5} - 2 \sqrt{2} - 7 \sqrt{2}) + ( - 4 \sqrt{3} + \frac{38 \sqrt{3} }{9} - \frac{10 \sqrt{3} }{9} = - \frac{43 \sqrt{2} }{5} - \frac{8 \sqrt{3} }{9} [/tex]