👤

Rezolvati urmatorul sistem de ecuatii

×+y=-1
× . y = -6

Va rogg!


Răspuns :

[tex]\left\{\begin{matrix}
x + y = - 1\\

x \times y = - 6\end{matrix}\right.[/tex]

[tex]x + y = - 1[/tex]

[tex]x = - 1 - y [/tex]

[tex]x \times y = - 6[/tex]

[tex]( - 1 - y) \times y = - 6[/tex]

[tex] - y - {y}^{2} = - 6[/tex]

[tex] - {y}^{2} - y + 6 = 0[/tex]

[tex] {y}^{2} + y - 6 = 0[/tex]

[tex] {y}^{2} + 3y - 2y - 6 = 0[/tex]

[tex]y(y + 3) - 2(y + 3) = 0[/tex]

[tex](y + 3)(y - 2) = 0[/tex]

[tex]y + 3 = 0 = > y _{1}= - 3[/tex]

[tex]y - 2 = 0 = > y_{2} = 2[/tex]

[tex]x=-1-y[/tex]

[tex]1)x_{1}=-1-(-3)[/tex]

[tex]x_{1}=-1+3[/tex]

[tex]x_{1}=2[/tex]

[tex]2)x_{2}=-1-2[/tex]

[tex]x_{2}=-3[/tex]

[tex]S=\left \{ (x_{1},y_{1}) ,(x_{2},y_{2})\right \}[/tex]

[tex]S=\left \{ (2,-3) ,(-3,2)\right \}[/tex]
[tex] \left \{ {{x+y=-1} \atop {x \cdot y=-6}} \right. \\ \\ \left \{ {{x=-1-y} \atop {(-1-y) \cdot y=-6}} \right. \\ \\ \left \{ {{x=-1-y} \atop {-y-y^{2}+6=0 \\ \\ [/tex]
[tex]- y^{2} -y+6=0 \\ [/tex]  inmultim cu (-1)

[tex] y^{2}+y-6=0 [/tex]
y²+y-6=0
Este o ecuatie de gradul II cu:
Δ=b²-4×a×c=1²-4×(-6)×1=1+24= 25⇒ Δ = 25,
are Δ pozitiv deci ecuatia are 2 solutii diferite
y₁=(-b+√Δ)/2a=(-1+5)/2=2
y₂=(-b-√Δ)/2a=(-1-5)/2=- 3

daca y₁=2  atunci x₁= -1-y= -1-2=-3       deci y₁= 2  si x₁ = - 3

daca y₂=-3   atunci x₂= -1-y = -1 + 3= 2 ⇒y₂= - 3   si  x₂= 2