[tex]\text{Merge cu CBS:}\\
\left(\displaystyle\sum_{k=1}^n(\sqrt{a_k})^2\right)\left(\displaystyle\sum_{k=1}^n(\sqrt{1-a_k})^2\right)\\
\text{Mai departe avem ca:}\\
\left(\displaystyle\sum_{k=1}^n a_k\right)\left(\displaystyle\sum_{k=1}^n (1-a_k)\right)\geq \left( \displaystyle\sum_{k=1}^n\sqrt{a_k(1-a_k)}\right)^2\\
[/tex]
[tex]\underbrace{\left(\displaystyle\sum_{k=1}^n a_k\right)}\left(n-\underbrace{\left(\displaystyle\sum_{k=1}^n a_k\right)}\right)\geq \left( \displaystyle\sum_{k=1}^n\sqrt{a_k(1-a_k)}\right)^2\\ ~~~~~~=1~~~~~~~~~~~~~~=1\\ 1(n-1)\geq \left( \displaystyle\sum_{k=1}^n\sqrt{a_k(1-a_k)}\right)^2\\ \text{Deci:}\\ \displaystyle\sum_{k=1}^n\sqrt{a_k(1-a_k)}\leq \sqrt{n-1},Q.E.D.[/tex]