👤

Rezolvati in R urmaătoarele ecuatii:

Rezolvati In R Urmaătoarele Ecuatii class=

Răspuns :

a) x² - 2x = 8
x² - 2x - 8 = 0
x² + 2x - 4x - 8 = 0
x( x + 2 ) - 4( x + 2 ) =0
( x + 2)( x - 4 ) = 0  
x + 2 = 0 ⇒ x = -2
x - 4 = 0 ⇒ x = 4 

b) x² + 4x = 0
x( x + 4 ) = 0 ⇒ x = 0
x + 4 = 0 ⇒ x = -4 

c) x² + 5 = 6x 
x² + 5 - 6x = 0
x² - 6x + 5 = 0
x² - x - 5x + 5 = 0
x( x - 1) - 5( x - 1) =0
( x - 1 )( x - 5 ) = 0
x - 1 = 0 ⇒ x = 1
x - 5 = 0 ⇒ x = 5 

d) 9x² + 6x = 24
9x² + 6x - 24 = 0   / : 3
3x² + 2x - 8 = 0
3x² + 6x - 4x - 8 = 0
3x( x + 2 )- 4( x + 2 ) = 0
( x + 2 )( 3x - 4 ) = 0 
x + 2 = 0 ⇒ x = -2
3x - 4 = 0 ⇒ x = 4/3 


e) 4x² - 48 = 4x
4x² - 48 - 4x = 0  / : 4
x² - x - 12 = 0 
x² + 3x - 4x - 12 = 0
x( x + 3 )( x - 4 ) = 0
( x + 3 )( x - 4 ) = 0 
x + 3 = 0 ⇒ x = -3
x - 4 = 0 ⇒ x = 4 

d) 16x² + 8x = 80
16x² + 8x - 80 = 0 / : 8
2x² + x - 10 = 0
2x² + 5x - 4x - 10 = 0
x( 2x + 5 ) - 2( 2x + 5 ) = 0
( 2x +5 )( x - 2 ) =0 
2x + 5 = 0 ⇒  x = - 5/2
x - 2 = 0 ⇒ x = 2 
[tex]a) {x}^{2} - 2x = 8[/tex]

[tex] {x}^{2} - 2x - 8 = 0[/tex]

[tex]a = 1[/tex]

[tex]b = - 2[/tex]

[tex]c = - 8[/tex]

[tex]\Delta = {b}^{2} - 4ac[/tex]

[tex]\Delta = {( - 2)}^{2} - 4 \times 1 \times ( - 8)[/tex]

[tex]\Delta = 4 + 32[/tex]

[tex]\Delta = 36 > 0 = > \exists \: \: x_{1} \neq \: x_{2}[/tex]

[tex]x_{1,2}=\frac{-b \: \pm \: \sqrt{\Delta}}{2a}[/tex]

[tex]x_{1,2}=\frac{-( - 2)\pm \sqrt{36} }{2 \times 1}[/tex]

[tex]x_{1,2}=\frac{2\pm6}{2}[/tex]

[tex]x_{1}=\frac{2 + 6}{2} = \frac{8}{2} = 4[/tex]

[tex]x_{2}=\frac{2 - 6}{2} = - \frac{4}{2} = - 2[/tex]

[tex]b) {x}^{2} + 4x = 0[/tex]

[tex]a = 1[/tex]

[tex]b = 4[/tex]

[tex]c = 0[/tex]

[tex]\Delta = {b}^{2} - 4ac[/tex]

[tex]\Delta = {4}^{2} - 4 \times 1 \times 0[/tex]

[tex]\Delta = 16 > 0 = > \exists \: \: x_{1} \neq \: x_{2}[/tex]

[tex]x_{1,2} = \frac{ - b \pm \sqrt{\Delta} }{2a} [/tex]

[tex]x_{1,2} = \frac{ - 4 \pm \sqrt{16} }{2 \times 1} [/tex]

[tex]x_{1,2} = \frac{ - 4 \pm4}{2} [/tex]

[tex]x_{1} = \frac{ - 4 + 4}{2} = \frac{0}{2} = 0[/tex]

[tex]x_{2} = \frac{ - 4 - 4}{2} = \frac{ - 8}{2} = - 4[/tex]

[tex]c) {x}^{2} + 5 = 6x[/tex]

[tex] {x}^{2} - 6x + 5 = 0[/tex]

[tex]a = 1[/tex]

[tex]b = - 6[/tex]

[tex]c = 5[/tex]

[tex]\Delta = {b}^{2} - 4ac[/tex]

[tex]\Delta = {( - 6)}^{2} - 4 \times 1 \times 5 = 36 - 20 = 16 > 0 = > \exists \: x_{1} \neq \: x_{2}[/tex]

[tex]x_{1,2}=\frac{-b \: \pm \: \sqrt{\Delta}}{2a}[/tex]

[tex]x_{1,2}=\frac{-( - 6)\pm\sqrt{16}}{2 \times 1}[/tex]

[tex]x_{1,2}=\frac{6\pm4}{2}[/tex]

[tex]x_{1}= \frac{6 + 4}{2} = \frac{10}{2} = 5[/tex]

[tex]x_{2}= \frac{6 - 4}{2} = \frac{2}{2} = 1[/tex]

[tex]d)9 {x}^{2} + 6x = 24[/tex]

[tex]9 {x}^{2} + 6x - 24 = 0[/tex]

[tex]a = 9[/tex]

[tex]b = 6[/tex]

[tex]c = - 24[/tex]

[tex]\Delta = {b}^{2} - 4ac[/tex]

[tex]\Delta = {6}^{2} - 4 \times 9 \times ( - 24)[/tex]

[tex]\Delta = 36 + 864 = 900 > 0 = > \exists \: x_{1} \: \neq \: x_{2}[/tex]

[tex]x_{1,2}=\frac{-b \: \pm \: \sqrt{\Delta}}{2a}[/tex]

[tex]x_{1,2}=\frac{-6\pm\sqrt{900}}{2 \times 9}[/tex]

[tex]x_{1,2}=\frac{-6\pm30}{18}[/tex]

[tex]x_{1}=\frac{-6 + 30}{18} = \frac{24}{18} = \frac{4}{3} [/tex]

[tex]x_{2}=\frac{-6 - 30}{18} = - \frac{36}{18} = - 2[/tex]

[tex]e)4 {x}^{2} - 48 = 4x[/tex]

[tex]4 {x}^{2} - 4x - 48 = 0[/tex]

[tex]a = 4[/tex]

[tex]b = - 4[/tex]

[tex]c = - 48[/tex]

[tex]\Delta = {( - 4)}^{2} - 4 \times 4 \times ( - 48)[/tex]

[tex]\Delta = 16 + 768[/tex]

[tex]\Delta = 784 > 0 = > \exists \: x_{1} \: \neq \: x_{2}[/tex]

[tex]x_{1,2}=\frac{-b \: \pm \: \sqrt{\Delta}}{2a}[/tex]

[tex]x_{1,2}=\frac{-(-4) \: \pm\sqrt{784}}{2\times4}[/tex]

[tex]x_{1,2}=\frac{4\pm28}{8}[/tex]

[tex]x_{1}=\frac{4 + 28}{8} = \frac{32}{8} = 4[/tex]

[tex]x_{2}=\frac{4 - 28}{8} = - \frac{24}{8} = - 3[/tex]

[tex]f)16 {x}^{2} + 8x = 80[/tex]

[tex]16 {x}^{2} + 8x - 80 = 0[/tex]

[tex]a = 16[/tex]

[tex]b = 8[/tex]

[tex]c = - 80[/tex]

[tex]\Delta = {b}^{2} - 4ac[/tex]

[tex]\Delta = {8}^{2} - 4 \times 16 \times ( - 80)[/tex]

[tex]\Delta = 64 + 5120[/tex]

[tex]\Delta = 5184 > 0 = > \exists \: x_{1} \: \neq \: x_{2}[/tex]

[tex]x_{1,2}=\frac{-b \: \pm \: \sqrt{\Delta}}{2a}[/tex]

[tex]x_{1,2}=\frac{-8\pm\sqrt{5184}}{2 \times 16}[/tex]

[tex]x_{1,2}=\frac{-8\pm72}{32}[/tex]

[tex]x_{1} = \frac{ - 8 + 72}{32} = \frac{64}{32} = 2[/tex]

[tex]x_{2} = \frac{ - 8 - 72}{32} = - \frac{80}{32} = - \frac{10}{4} = - \frac{5}{2} [/tex]