👤

1. determinaţi numerele x, y si z invers proportionale cu numerele 1,5;2,5; si 3,5 stiind ca x+2y+3z=244


Răspuns :

[tex]1.5 = \frac{3}{2} [/tex]

[tex]2.5 = \frac{5}{2} [/tex]

[tex]3.5 = \frac{7}{2} [/tex]

[tex](x, y , z) \: ip \: \: ( \frac{3}{2}... \frac{5}{2} ... \frac{7}{2} ) [/tex]

[tex]x \times \frac{3}{2} = y \times \frac{5}{2} = z \times \frac{7}{2} = k[/tex]

[tex] \frac{3x}{2} = \frac{5y}{2} = \frac{7z}{2} = k [/tex]
[tex] \frac{3x}{2} = k = > x = \frac{2k}{3} [/tex]
[tex] \frac{5y}{2} = k = > y = \frac{2k}{5} [/tex]
[tex] \frac{7z}{2} = k = > z = \frac{2k}{7} [/tex]
**x+2y+3z=244
[tex] \frac{2k}{3} + 2 \times ( \frac{2k}{5}) + 3 \times ( \frac{2k}{7} ) = 244[/tex]
[tex] \frac{2k}{3} + \frac{4k}{5} + \frac{6k}{7} = 244[/tex]
**aduci la numitor comun(care e 105) si scapi de numitor
70k+84k+90k=25620
244k=25620
[tex]k = \frac{25620}{244} [/tex]
k=105
***************
[tex]x = \frac{2 \times 150}{3 } = 2 \times 5 0= 100[/tex]

[tex]y = \frac{2 \times 150}{5} = 2 \times 30 = 60 [/tex]

[tex]z = \frac{2 \times 150}{7} = \frac{300}{7} [/tex]