👤

Se considera nr. reale x, y ≠ 0. Calculati :
[tex] {x}^{2} \times {x}^{2} + {x}^{3} \times x + 3 \times {x}^{3} = \\ {x}^{6} \div {x}^{3} - x \times x \times x + {x}^{7} \div {x}^{4} = \\ ( {x}^{2}) ^{4} \div {x}^{5} + {3x}^{3} \times 2 - x \times {x}^{2} = \\ ( {y}^{4} )^{3} \div ( {y}^{2} )^{5} + (3y) ^{2} - 2 \times {y}^{4} \div {y}^{2} = \\ {x}^{15} \div ( {x}^{2} )^{5} \div x + ( {2x}^{2} ) ^{2} - {x}^{2} \times {x}^{2} = \\ ( - y)^{2} + {2y}^{2} + {y}^{6} \div ( - y)^{4} .[/tex]