👤

calculati media geometrica a nr-lor
5 radical 2+7 si 5 radical 2-7
2 radical 24 si 9 radical 6
0,09 si 100
4-2 radical 3 si 4+2 radical 3
radical 2 si radical 8
3 radical 5-6 si 3 radical 5+6


Răspuns :

[tex]1)mg = \sqrt{(5 \sqrt{2} + 7)(5 \sqrt{2} - 7)} [/tex]

[tex]mg = \sqrt{ {(5 \sqrt{2}) }^{2} - {7}^{2} } [/tex]

[tex]mg = \sqrt{50 - 49} [/tex]

[tex]mg = \sqrt{1} [/tex]

[tex]mg = 1[/tex]

[tex]2)mg = \sqrt{(2 \sqrt{24} \times 9 \sqrt{6} } [/tex]

[tex]mg = \sqrt{2 \times 2 \sqrt{6} \times 9 \sqrt{6} } [/tex]

[tex]mg = \sqrt{4 \sqrt{6} \times 9 \sqrt{6} } [/tex]

[tex]mg = \sqrt{36 \sqrt{36} } [/tex]

[tex]mg = \sqrt{36 \times 6} [/tex]

[tex]mg = \sqrt{36} \times \sqrt{6} [/tex]

[tex]mg = 6 \sqrt{6} [/tex]

[tex]3)mg = \sqrt{0.09 \times 100} [/tex]

[tex]mg = \sqrt{9} [/tex]

[tex]mg = 3[/tex]

[tex]4)mg = \sqrt{(4 - 2 \sqrt{3})(4 + 2 \sqrt{3} ) } [/tex]

[tex]mg = \sqrt{ {4}^{2} - {(2 \sqrt{3} )}^{2} } [/tex]

[tex]mg = \sqrt{16 - 12} [/tex]

[tex]mg = \sqrt{16} - \sqrt{12} [/tex]

[tex]mg = 4 - 2 \sqrt{3} [/tex]

[tex]mg = 2(2 - \sqrt{3} )[/tex]

[tex]5)mg = \sqrt{ \sqrt{2} \times \sqrt{8} } [/tex]

[tex]mg = \sqrt{ \sqrt{2 \times 8} } [/tex]

[tex]mg = \sqrt{ \sqrt{16} } [/tex]

[tex]mg = \sqrt{4} [/tex]

[tex]mg = 2[/tex]

[tex]6)mg = \sqrt{(3 \sqrt{5} -6 ) (3 \sqrt{5} + 6)} [/tex]

[tex]mg = \sqrt{ {(3 \sqrt{5} )}^{2} - {6}^{2} } [/tex]

[tex]mg = \sqrt{45 - 36} [/tex]

[tex]mg = \sqrt{9} [/tex]

[tex]mg = 3[/tex]