Răspuns:
[tex]\displaystyle C_5^3=10[/tex]
Deci, combinari de 5 luate cate 3 este egal cu 10.
Explicație pas cu pas:
[tex]\displaystyle \boxed{C_n^k=\frac{n!}{k!(n-k)!} } - \text{combinari de n luate cate k}[/tex]
unde,
[tex]\boxed{n!=1 \cdot 2 \cdot 3 \cdot ... \cdot n} - \text{factorial}[/tex]
[tex]\displaystyle C_5^3=\frac{5!}{3!(5-3)!}=\frac{5!}{3! \cdot 2!}=\frac{\not1 \cdot \not2 \cdot \not3 \cdot 4 \cdot 5}{\not1 \cdot \not2 \cdot \not3\cdot 1 \cdot 2} = \frac{4 \cdot 5}{2} =\frac{20}{2} =10[/tex]