👤

The problem is below. Check it out and help me with solutions .Please and thx!

The Problem Is Below Check It Out And Help Me With Solutions Please And Thx class=

Răspuns :

[tex]|z|\leq 1,\quad m\ \textless \ n \\ z = a+bi \\ \\ (z+\overline{z})^m+(z+\overline{z})^{m+1}+...+(z+\overline{z})^n = 2016\\ \\ (a+bi+a-bi)^m+(a+bi+a-bi)^{m+1}+...+(a+bi+a-bi)^n =$ $ \\ =2016 \\ \\ (2a)^m+(2a)^{m+1}+...+(2a)^{n} = 2016 \\ \\ $Observam ca in paranteze e un numar real oricare ar fi \\ partea imaginara.$ \\ $Daca z = \dfrac{1}{2} \pm pi$ avem: \\ \\ 1^m+1^{m+1}+...+1^{n} = 2016 \\ \\ $Iar $ m=1,n = 2016: \\ \\ 1^1+1^2+...+1^{2016} = 2016 \\ \\[/tex]

[tex] 2016 = 2016 \quad (A) \\ \\ $ Pentru z = \dfrac{1}{2} \pm pi. \\ \\ $ Avem solutie cand $ (m,n) = (k,k+2015),\quad k\in \mathbb_{N} $ \\ \\ \Rightarrow (z,m,n) = \Big(\dfrac{1}{2}\pm pi,k,k+2015\Big), \quad p \in \Big[-\dfrac{\sqrt3}{2}, \dfrac{\sqrt3}{2}\Big], k\in \mathbb_{N}$ $[/tex]